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A SEMI-IMPLICIT COLLOCATION METHOD: 
APPLICATION TO THERMAL CONVECTION IN 

2D COMPRESSIBLE FLUIDS 

SERGE GAUTHIER 
CEA, Centre dEtudes de Limed- Valenton. F-94195 Villeneuve-Si-Georges Cedex, France 

SUMMARY 
A semi-implicit pseudo-spectral collocation method using a third-order Runge-Kutta numerical scheme for 
the full Navier-Stokes equations is described. The Courant-Friedrichs-Lewy condition is overcome by the 
implicit handling of a diffusive term, as suggested by Harned and Kerner. All such terms are solved with an 
iterative scheme in the Fourier space. Simulation of thermal convection in 2D compressible fluids is made by 
expanding variables on a Fourier-Chebyshev basis. We give some examples of sub- and supersonic steady 
solutions in the case where the heat flux at the upper boundary is governed by a black body. 
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1. INTRODUCTION 

Stability and transition to turbulence of compressible flows are subjects of growing interest. Such 
computations are usually performed within the framework of spectral methods owing to their 
high accuracy. '* ' Direct numerical simulations of homogeneous isotropic turbulence have 
already been carried out by several authors. In that respect, Passot and Pouquet have developed 
a new artificial viscosity to perform supersonic compressible flow simulations in two  dimension^.^ 
To study the stability of compressible flows over a flat plate with one inhomogeneous direction, 
Erlebacher and Hussaini have carried out explicit 2D and 3D simulations with a fully explicit 
~ c h e m e . ~  For the study of the gravitational collapse of a star, Bonazzola and Marck wrote 2D and 
3D pseudo-spectral codes for spherical geometry. They use semi-implicit schemes and a constant 
artificial viscosity to spread out the shock wave.' Compressible convection has also been 
simulated with spectral methods6, ' 

In the particular case of thermal convection the Boussinesq equations have been widely used 
over the last 20 years. This approximation holds for a compressible fluid provided that the 
vertical extent of the fluid is small enough. In some situations, e.g. in stellar convection, the 
stratification of the fluid can no longer be ignored and we have to use the full Navier-Stokes 
equations. Since the pioneering work of Graham,' a number of papers have been devoted to the 
simulation of compressible convection within finite difference schemes.'-' ' Yamaguchi' ' studied 
the case of a constant inward heat flux at the bottom. He found supersonic solutions even at low 
Rayleigh numbers. High resolution of compressible convection in two and three dimensions has 
been carried out by Woodward et a1.12 They use a finite difference code based on the piecewise 
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parabolic method for the inviscid Euler equations. Dissipation of energy by numerical diffusion 
leads to time-dependent complex flows. 

Owing to the very different time scales involved in a compressible flow, tens of thousands of 
time steps are required to achieve convergence in the compressible case while only thousands of 
time steps are needed in incompressible flow simulations. Indeed, the acoustic time scale may be 
103-104 smaller than the viscous time scale. It is then necessary to use numerical schemes with a 
larger implicit part than those used in incompressible flow simulations. 

In view of this, we have developed a 2D pseudo-spectral code for the full Navier-Stokes 
equations7 which has been used so far to numerically simulate compressible Rayleigh-Benard 
convection. A Fourier expansion is used in the horizontal direction. Expansion over the 
Chebyshev polynomials used in the vertical inhomogeneous direction leads to severe time step 
constraints owing to the high resolution on the boundaries. In order to overcome these 
constraints, the non-linear viscous and thermal diffusion terms are solved with an iterative 
method. In the first version of the code, diffusion terms in the vertical direction only were solved 
implicitly by an iterative method preconditioned by the time-independent Chebyshev approxima- 
tion of the diffusion operator. 

In this paper we present a more implicit version where convective terms are treated semi- 
implicitly and all diffusion terms are handled in the Fourier space with an iterative method 
preconditioned by the finite difference approximation of the diffusion operator. Both numerical 
schemes are used to compute sub- and supersonic steady state solutions obtained with a Robin 
boundary condition for the temperature and Neumann boundary conditions for the velocity. 

Section 2 introduces the physical problem, Section 3 is devoted to details of the numerical 
scheme, and numerical applications are described in Section 4. 

2. THE PHYSICAL PROBLEM 

Motion takes place in a two-dimensional rectangular cavity of width L, and height d. The x2-axis 
is directed downwards so that the gravitation, represented by the vector g=(O, 0, g), is positive 
along this direction. The fluid layer extends from x2,  to x2,  + d. 

The evolution equations for a compressible, viscous, thermally conducting gas are as follows: 

apE auj(pE+P) ao..u. a aT 
at ax axi axi axi 

+ - K - - ,  - 'J  J -+ - 

where E is the total energy defined by 
E ='(u2 2 1+u3+e-gx,,  

oij is the viscous stress tensor given by 

) aui au. 2 au, g i j = p  -+>--&.- ( axj  axi 3 ' ~ a ~ ~  

(3) 

and i, j ,  I = 1, 2. The Stokes relation between the first and second viscosity coefficients has been 
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used. This set of equations is closed by the equations of state for a monatomic perfect gas: 

P = R , p T ,  e=C,T,  (6) 
P,  p ,  T and e are the pressure, the density, the temperature and the internal energy respectively; 
the ui are the components of the velocity. The thermal conductivity and the dynamic viscosity 
coefficients are taken as constants. R ,  is the gas constant and C ,  the specific heat at constant 
volume. 

We use free slip boundary conditions for the velocity and a Robin boundary condition for the 
temperature. This set of boundary conditions is a reasonable approximation for stellar convec- 
tion zones. The boundary conditions for the velocity are as 

au  1 

8x2 
u 2 = 0  and -=0 at X ~ = X ~ , ~ ,  x,,,+d. (7) 

The upper boundary condition for the temperature is obtained by imposing the heat flux at the 
upper boundary to be fixed by the radiative flux of a black body, 

where usb is the Stefan-Boltzmann constant. Taking into account the fluctuations of the thermal 
conductivity up to first order with respect to the density and the temperature and linearizing 
equation (8), we get the following relation at the upper boundary: 

1 dl3 1 dK 1 dK 
osb dx, KO dp K0dO 
- --+- -p+--6=448, (9) 

where p and 6 are the fluctuations of density and temperature respectively. Assume then the 
following form for the thermal conductivity K(p, 6) of the black body: 

where 0 and are some basic state of density and temperature respectively. 
leads to the following inhomogeneous time-dependent Robin-type boundary 
temperature fluctuations: 

Equation (9) then 
conditions for the 

1 d6 --(x, Z-’, t)-O(x, Z- l ,  t)=p(x, Z - I ,  t )  at the top layer 
& dz 

6(x,Z-’+I,t)=O at the bottom layer, (1 1) 
where S, is the Stefan number defined by &=oSbT3d/KO. 

Periodic boundary conditions are used in the horizontal direction for all variables. 
In equation (1 1) we have used dimensionless variables by rescaling length, time, density and 

temperature as d, d2p(x2, o ) / p ,  p(x,, o) and T(x,, o) respectively. Moreover, we have defined 
x = x1 /d and z = x,/d. 

With these boundary conditions in the z-direction, the static state obtained by setting a/at = O  
and ui=O in equations (1H3) is 

T(z )  = &z + 1 - s, 2 - 1, ( 124 
p(z)=(&z+l-sfz-l)m, 

P(z)=(&z + 1 -&Z - l ) m +  1, 
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where the dimensionless co-ordinate z goes from Z-'  to Z - ' + l ,  with Z = d / x , , , .  To be 
consistent with Dirichlet boundary conditions, we have kept the parameter Z.7 -  l o  However, in 
this case the stratification parameter is S, and the index of the polytrope is 

m=-- 1, where Po = T(z, + d) -  T(z,). 
R*PO 

The two-dimensional compressible convection problem is characterized by six dimensionless 
parameters, namely the aspect ratio A, the Prandtl number Pr,  the ratio of specific heats y, the 
polytropic index m, the Stefan number S, and the Reyleigh number Ra. The parameters Pr and y 
are given by the thermodynamical properties of the fluid. The Stefan number measures the 
magnitude of the radiative diffusion with respect to the thermal conductivity and the stratifi- 
cation. The Rayleigh number measures the degree of instability. Their expressions are 

where the subscripts L and U refer to the lower and upper layer boundaries. 

3. DESCRIPTION OF THE PSEUDO-SPECTRAL CODE 

Density, velocity and total energy are expanded over a Fourier-Chebyshev basis as 
I = N / 2 - 1  M 

I = - N / 2  m = O  
U ( X ,  z ,  t )  = 1 ulm(t) exp( - 2inlx/L,) Tm(2z), 

where Tm is the Chebyshev polynomial of degree m and L, is the horizontal periodicity. 

non-linear products are performed in the physical space at the grid points 
We use a collocation method where spatial derivatives are computed in the spectral space and 

x i = i L , / N ,  i=O,  1 ,..., N - 1 ,  (15) 

zj=z-l +" 2 1 + c o s ( n y ) ] ,  j=o, 1 , .  . . , M. 

Time marching is also performed in the physical space by means of a finite difference technique. 
As already stated, a simple numerical scheme consists of the Adams-Bashforth predictor of order 
two and the third-order Adams-Moulton corrector for all but the vertical diffusion terms. These 
terms are handled by an iterative procedure preconditioned by the time-independent Chebyshev 
approximation of the diffusion operator. This spectral preconditioning appears to be very 
efficient as regards the CPU time and the number of iterations needed to achieve a given 
accuracy. In this approach, however, the time step obeys the CFL condition 

where c is a constant that depends on the numerical scheme. It is then of interest to test more 
implicit numerical methods in order to overcome this constraint. 



A COLLOCATION METHOD FOR 2D COMPRESSIBLE CONVECTION 989 

3.1. The semi-implicit numerical scheme: a model equation 

As pointed out in Reference 13, the key idea of semi-implicit numerical schemes lies in the 
recognition of the source term that produces numerical instability. A simple approximation, 
e.g. linear, may then be treated implicitly. Harned and Kerner14 have applied this idea to the 
magnetohydrodynamics equations within the finite difference framework. They notice that fast 
modes are described by a wave equation obtained from linearizing the Euler equation and the 
energy equation: 

a Z u  Y ~ o  
at2 Po 

- V(V*U) ,  

where u is the x-component of the velocity and Po is the pressure. Consequently, the term 
AiAt2V (V . u) is added to both sides of the velocity equations and solved implicitly with a second- 
order Runge-Kutta numerical scheme. A ,  is a constant and At is the time step. Unconditional 
stability is ensured if all eigenvalues lie within the unit circle. This occurs for 

where 0 is the Crank-Nicholson parameter chosen close to *. 

velocity equation, equation (18) may be rewritten as 
If we now use the Navier-Stokes equation by adding a viscous term such as vaz /ax2  to the 

U " + ' = A U " ,  
where Ut = (u, P)' and 

A Fourier discretization has been used, a = A t 2 k 2 y P o / p o  and Y= 1 + A t 2 k 2 A i .  The condition on 

Combination of a second-order Runge-Kutta numerical scheme with a Chebyshev approxima- 
tion is unfortunately known to be weakly stable. We therefore turned to a semi-implicit third- 
order Runge-Kutta scheme (RK3) in a low-storage formulation.'. '' This scheme reads 

where the terms F(u) and G(u) are respectively treated explicitly and implicitly: 

H ,  =AtF(u"), (22b) 

9 u 1  = 9 u " + * H l  +&At(G"+G,) ,  (2W 
H , = A ~ F ( u , ) - $ H , ,  

9 u 2 = 9 u l  + g H 2 + & A t ( G l  + G 2 ) ,  

H ,  = AtF(u2) - # H 2  , 
9~"" = 9 u 2  +&H3+iAt (G2+G"+' ) ,  
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where 9 = (1 - At2 AiVV.). 
In order to investigate the stability of RK3, we write equation (18) in the form 

U"+ 1 =Bun, 
with 

B = M (8/15) M (  15/16) M (  1/3) + M(8/15) N(25/48) + N ( 5  1 /80) M (  1/3) + N (  - 17/48), 

where the matrices M and N are given by 

N(j?)= 1 -M(B), 1 

with Y= 1 +At2k2Ai. The eigenvalues depend on the parameter u = A O / c s ,  with ~ , = ( y P ~ / p ~ ) ~ / ~ .  
They all lie within the unit circle for every time step if u 2 a, ~ 0 . 5 7 4 .  

3.2. The full Navier-Stokes equations 

The RK3 numerical scheme has been implemented for the full Navier-Stokes equations. All but 
the diffusion terms are handled by the Runge-Kutta scheme and are represented by F in equation 
(22a). The semi-implicit term 9 is used for the two velocity components, which are in turn 
governed by evolution equations coupled by the second viscosity term. These terms are re- 
presented by G in equation (22a) and are treated by a Crank-Nicholson scheme, leading to the 
following linear system for the unknowns (u"", u"+l) :  

In this equation Dt = AiAt/(+$ and [ takes successively the values given by the procedure (22), 
where Su and S, are computed from the explicit stage with RK3; the quantity ptot is the total 
density and ti, denotes the spectral coefficient of u. This linear system is solved by means of a 
Chebyshev iterative method: 

(25) tip+ 1) = .hW + (1 - w j ) @  - 1) - .L - 1 J k  j ap (LspW- S k ) ,  

where wj=2j?7@)/q+ (j?) and Ti is the Chebyshev polynomial of degreej. The optimal value for 
a is given by 

and p=min(ll -cm-', 11 -aMJ-'), (26) 
2 

M + m  
@=- 

where m and M are respectively the lower and upper bound of the relevant operator La;' Lsp. 

difference approximation of the diffusion operator. Write the preconditioning matrix as 
Several preconditioning matrices can be built. The simplest one uses the second-order finite 
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Table I. Spectrum of the operator Lap1LSp 
versus the time step and the parameter of the 

semi-implicit scheme 

C a =  Ao/cs  Spectrum 

0.10 0 0  Cl.00, 1.063 
3.00 0 0  Cl.00, 1.411 
3 0 0  0 5  [lGO, 1.861 

Table 11. Iteration number of the u-v- and E-equations versus 
the time step and the parameter of the semi-implicit scheme 

Iteration number 

c a = A, /c ,  u-v-equation E-equation 

0.10 0.0 24 1 1  
2.00 0.5 33 13 
2.50 0.5 36 15 

with 

L g  = La" = 0. (30) 
The spectrum of the operator La;' L,, is given in Table I as a function of the CFL number and the 
coefficient of the semi-implicit term a. For the last case (c = 3.0, a = 0.5) we obtain some complex 
eigenvalues with imaginary parts of order 

Table I1 gives the number of iterations needed to search a residue lower than lo-' for different 
values of a and c. It turns out that solving the u- and u-equations simultaneously requires roughly 
twice the number of iterations needed to solve one equation. We also compared the com- 
putational efficiency of this numerical scheme with that presented in Reference 7. It appears that a 
time step of the RK3 requires much more CPU time than the AB2-AM3 numerical scheme, but 
the time step size is much larger. As a result, the semi-implicit RK3 is only slightly less efficient 
with regards to computer time, but the accuracy and consistency are much better. 

We have also used to finite difference and the spectral approximation of the first derivative for 
Lip2 and L$. In both cases the spectrum is not shrunk and therefore leads to the same rate of 
convergence. 

4. NUMERICAL APPLICATIONS 

As an example of the numerical procedure described in Section 3, we have computed convection 
solutions for different Stefan number values, i.e. for different values of the stratification parameter. 
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In the following we detail the features of these solutions and compare them with those obtained 
with a constant heat flux or fixed temperature at the two boundaries.’. l 1  In our simulations the 
aspect ratio is 4 and the Rayleigh number 1 1  500 for all cases. The Prandtl number is Pr = 0 1  and 
the ratio of specific heats is that of a monatomic gas, y = 1.67. The polytropic index is equal to the 
value m =  1. 

As opposed to the cases already investigated,’. ’, l 1  the convection solutions with a Robin 
boundary condition for the temperature seem to be more symmetrical, as seen in Figures 1 and 2. 
Indeed, the centres of the rolls are located at x = 1.06, z = 0.62 and x = 1-08, z =066 for the cases 
corresponding to Stefan numbers 1 and 273 respectively. The centre is only slightly shifted 
towards the downward-directed plume and more clearly below the middle of the layer even in the 
case where density and pressure fluctuations are very high with respect to the basic state. Both 
shifts evolve weakly when the Stefan number is increased. In that respect it is of interest to 
compare the widths of rising and sinking flows defined by the point where the velocity is halved.’ 
The width of the upflow is 0.45 while the downflow extends to 0.32 for &= 1.  The asymmetry 
increases for the Sf=2.73 case, where the widths are respectively 032 and 0.21. Consequently the 
velocities at the two boundaries are not really different: the value of the velocity is 398 arbitrary 
units (a.u.) at the upper boundary and -485 a.u. at the lower one for 5;= I, and 331 and 426 a.u. 
respectively for S, = 2.73. 

According to this weak asymmetry, the maximum Mach number increases with the Stefan 
number. Beyond an approximate value of 2 the steady flow exhibits some supersonic regions 
concentrated near the upper bound. 

Table I11 gives the final steady values of characteristic quantities such as the maxima of the 
velocity, the Mach number and the relative thermodynamical fluctuation quantities. The Mach 
number is defined by (u2 +u2)/c,, where c, is the local sound speed. The root-mean-square (RMS) 
value of $ is defined by 

1 1 $ 1 1  =($2)1’2. 

The maximum velocity is horizontally directed and occurs at the lower boundary of the layer 
approximately below the centres of the rolls for all cases. The maximum vertical velocity occurs in 
the downward-directed plume at the same altitude (z N 0.63 for all values of Stefan number except 
S,= 1, where ~ ~ 0 . 5 8 )  as the centres of the rolls. The vertical velocity increases with the 

CONTOUR FROM - 1 5 0 0 . 0  TO 1 5 0 0 . 0  CONTOUR I N T E R V A L  OF 109.00  P T C 3 . 3 ) -  -289 1 3  

Figure I .  Iso-vorticity contours for a Stefan number equal to 1. The aspect ratio is 4, the Rayleigh number is 11 500, the 
polytropic index is 1, the Prandtl number is 0.1 and the ratio of specific heats is 1.67. A weak asymmetry of the flow 
appears, although the iso-vorticity contours reveal strong velocity gradients at the bottom of the layer. The number of grid 

points is N=150, M = 3 0  
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CONTOUR FROM -1800. 0 T O  1800. 0 CONTOUR INTERVRL OF 2 0 0 . 0 0  PTC3.3)-  -940.  7 2  

(b) 

CONTOUR FROM -700. 00 TO 490. 00 CONTOUR INTERVRL OF 70. 000 P T ( 3 . 3 ) -  57. 6 1 9  

(4 

CONTOUR FROM - 0 . 9 6 0 0 0  TO 0 . 2 4 0 0 0  CONTOUR INTERVRL OF 0. B0000E-01 P T ( 3 . 3 ) -  - 0 .  73160  

(4 
Figure 2. (a) Velocity field, (b) iso-vorticity contours and (c) velocity divergence contours for a Stefan number equal to 
2.73. The velocity field divergence is positive when the fluid expands (i.e. in the rising flow) and negative when it is 
compressed (i.e. in the sinking flow). (d) Iso-values of the Mach number minus one; supersonic regions appear clearly at 

the top of the layer. The number of grid points is N = 150, M = 30 
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Table 111. Characteristics of the solutions for different values of the Stefan number 

Characteristic Stefan number 

P J P 2  
P I I P ,  
Maximum velocitv 
Horizontal velocity 
041 
Vertical velocity 
Ibll 
Maximum momentum 
I/ P V  I/ 
Nusselt number 
Maximum Mach number 

1 .o 1.5 

2 2.5 
4 6.25 
4.866 x 10’ 
4.866 x 10’ 
2.304 x 10’ 
3.122 x 10’ 
1.077 x 10’ 
9.316 x 10’ 
3.884 x 10’ 
1.821 2.424 
0.550 0789 
0-2 17 0536 
0.063 0112 
0.174 0269 
0.074 0101 
0.324 0.654 
0.101 0180 

4.777 x 10’ 
4.777 x 10’ 
2.286 x 10‘ 
3.352 x 10’ 
1.027 x 10’ 
1.097 x 10’ 
4-509 x 10’ 

2.0 

2.0 
9 
4.606 x 10’ 
4606 x 10’ 
2.232 x 10’ 
3.409 x 10’ 
0.971 x 10’ 
1.249 x 10’ 
5-040 x 10’ 
3.056 
1.170 
1.054 
0.168 
0.365 
0124 
1.076 
0266 

2.5 2.73 

3.5 
12.25 
4.387 x 10’ 
4.387 x 10’ 
2.149 x 10’ 
3.355 x 102 
0910 x 10’ 
1.394 x 10’ 
5-465 x 10’ 
3.691 
1.228 
1.941 
0.226 
0457 
0.143 
1.536 
0.351 

3.73 
13.9 1 
4.300 x 102 
4.300 x 10’ 
2.104 x 10’ 
3-303 x 10’ 
0.881 x 10’ 
1.462 x 10’ 
6.628 x 10’ 
3.992 
1.315 
2.700 
0.255 
0.496 
0.150 
1.756 
0.388 

stratification for subsonic solutions. When the supersonic regions appear, the vertical velocity 
decreases with increasing value of the Stefan number. 

The maximum Mach number based on the flow velocity occurs at the upper boundary of the 
layer where the velocity is horizontal. It increases from 0.55 to 1-315 with increasing value of the 
Stefan number. Figure 3(d) displays the iso-values of the Mach number in excess of unity, showing 
clearly the supersonic domain at the upper boundary of the layer. Similar behaviour has been 
found by Yamaguchi” in the case of a fixed heat flux. 

The maxima of the thermodynamical variables given in the Table 111 are defined by the relation 

where the maximum is taken over the two-dimensional domain. The maxima of the relative 
density fluctuation pmax range from 0.217 to 2.7 when the Stefan number reaches the value 2.73 
(Figure 4). Except for the case S,= 1, this maximum is located at  the upper boundary of the layer 
above the sinking flow. The maximum of the relative temperature fluctuations arises obviously in 
the rising flow very close to the lower boundary (Figure 5). The maximum of the pressure, also 
defined by equation (31), reflects the very high values of the density fluctuations for the supersonic 
cases (Figure 6). 

Beyond this value of the Stefan number, the peak of the density fluctuations is too high and 
cannot be resolved by the numerical scheme without some artificial viscosity. 

In steady state the total energy flux becomes independent of depth and is written as9* 

where F, is the convective heat flux, F K  is the kinetic flux, F, is the radiative flux and Fv is the 
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Figure 3. (a) Convective heat ( F c ) ,  kinetic (FK), radiative (FR), viscous (F,) and pressure (Fp) fluxes and (b) work done by 
buoyancy (Es ) ,  pressure (Ep) and viscous (E,) forces versus the altitude z for the same set of parameter values used in 
Figure 1. Fluxes and work have been scaled by the total flux at the bottom. The co-ordinate z varies from 0 to 1 from top 

to bottom 
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viscous flux defined by the following relations: 

F v = G ,  (36) 
where the overbar denotes the horizontal average and the prime stands for the fluctuation about 
this mean. 

We also define the pressure flux by F ,  = u2 P’ and the rates of work done by buoyancy, pressure 
and viscous forces, which are given by 

E ,  = g p u , ,  (37) 

d U i  
Ev=gij-* axj (39) 

Table IV gives the maxima of the different fluxes contributing to the total flux and of the work 
done by gravitational forces, pressure fluctuations and viscous forces. The evolutions with respect 
to z are reported in Figures 3 and 7, where all quantities have been scaled to the total flux at  the 
bottom. 

For a Stefan number equal to 1 the main contribution to the total flux is given by the radiative 
flux, which is approximately constant at 70% of the total flux between z = 0.4 and 0-8. Recall that 
the expression of the adiabatic flux is given by the condition dS =0, where S is the entropy of the 
fluid, which leads to F,=gK/CP.l6 Between 22.06 and 0.9 the radiative flux is approximately 
equal to the adiabatic flux so that the heat transfer is maximum. It turns out that for large enough 
temperature gradients a hydrodynamical motion is created in order to maximize the heat 
transport. 

Table IV. Maximum values for the heat, kinetic, radiative, viscous and acoustic fluxes, and maxima of the 
work done by gravitational forces, pressure fluctuations and viscous forces 

Maximum Stefan number 

1 .o 1.5 2.0 2.5 2.73 

Heat flux 
Kinetic flux 
Radiative flux 
Viscous flux 
Acoustic flux 
Gravitational force work 
Pressure fluctuation work 
Viscous force work 

0.339 x lo7 0.334 x 10’ 0337 x lo2 0.334 x 10’ 0332 x 10’ 
-0.659 x lo6 -0.992 x lo6 -0.107 x lo6 - 1.162 x lo6 - 1.150 x lo6 
0.227 x lo6 0.273 x lo6 0.294 x lo6 0294 x lo6 0289 x lo6 

-0.537 x lo7 -0.706 x lo6 -0.825 x lo6 -0.859 x lo6 -0.853 x lo6 
0.808 x lo7 0.115 x lo8 0146 x lo8 0168 x lo* 0175 x lo8 
0.191 x lo7 0.217 x lo7 0.228 x lo7 0.228 x lo7 0.225 x lo7 

0.843 x 107 0.620 x 107 0510 x 107 0.444 x lo7 0423 x 107 

0.150 x 107 0174 x 107 0.190 x 107 0.195 x 10’ 0.175 x lo7 
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1.2;/l , I , I , I ,  , , , , I , , , I , I  

.----______________.-- 

(b) z 

Figure 4. (a) Relative density fluctuation contours for S,=2.73. Minima of the relative density fluctuations occur at the 
centres of the rolls. The maximum, equal to 2.7 D(Z-') ,  occurs at the upper boundary in the sinking flow. (b) Static and 

total density profiles averaged in the x-direction 

The heat flux reaches 40% of F ,  at z = 0 6  and vanishes at the two boundaries owing to the 
Dirichlet boundary conditions used for the velocity. The kinetic flux is negative in the upper 
region of the layer with a minimum at z = 0 6  and becomes positive at  z=O.82; in this region it 
reaches 3% of FT. The viscous flux is negative in the middle of the layer between z = 0.3 1 and 063. 
It is maximum at z=0.9&0.95 with a value of 2.7% of F T .  The acoustic flux is negative in the 
upper region of the layer, becomes positive at  z = 0.76 and reaches 10% of F T  in the lower region. 
The work done by gravitational forces is positive across the layer. Notice that the work done by 
pressure fluctuations is exactly zero for an incompressible flow; in our case it is positive in the 
upper part of the layer and negative from z = 0.83 to the bottom of the layer. It reaches high values 
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Figure 5. (a) Relative temperature fluctuation contours for Sf=2.73. A maximum of 49.6% of the static state value occurs 
at the upper boundary in the rising flow. (b) Static and total temperature profiles averaged in the x-direction 

at the bottom of the layer where pressure fluctuations are large and velocity gradients strong. The 
work done by the viscous forces does not vanish at the boundaries owing to the free slip boundary 
conditions used for the velocity. 

For a higher stratification parameter value (S, = 2.73) the heat flux is now 80% of the total flux 
at z=O.7 and is approximately constant between z=O.6 and 0.9. The radiative flux reaches 55% 
of F ,  between z = 0 6  and 0.9. The acoustic flux is negative in the upper part of the layer, decreases 
down to - 25 % of F ,  and becomes positive at z = 0.88. The work done by gravitational forces is 
always positive and the work done by pressure fluctuations reaches a peak value at the lower 
boundary owing to a high velocity divergence where the flow meets the boundary. 
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Figure 6. (a) Relative pressure fluctuation contours for &=2.73. A maximum of 176% of the static state value occurs at 
the upper boundary in the rising flow. (b) Static and total pressure profiles averaged in the x-direction. The pressure 
fluctuations exhibit maxima wherever the flow is changing direction, while weak gradients can be seen in the centres of the 

rolls 

5. CONCLUSIONS 

We have developed a pseudo-spectral algorithm to simulate the thermal convection of a two- 
dimensional fully compressible viscous fluid. Variables are expanded over a Fourier basis in the 
horizontal direction and over Chebyshev polynomials in the vertical inhomogeneous direction. 
A third-order Runge-Kutta numerical scheme and a semi-implicit treatment of the convective 
terms have been used. All diffusion terms are handled with the Chebyshev iterative method in the 
Fourier space. The fluid is a perfect gas with constant dynamic viscosity and thermal conductiv- 
ity. Both sub- and supersonic steady state solutions have been reached with a Robin boundary 
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Figure 7. (a) Convective heat (FJ, kinetic (FK), radiative (FR), viscous (F,) and pressure fluxes and (b) work done by 
buoyancy (EBjr pressure (Ep) and viscous (E,) forces versus the altitude z for a Stefan number equal to 2.73. Fluxes and 

work have been scaled by the total flux at the bottom. The co-ordinate z varies from 0 to 1 from top to bottom 
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condition for the temperature. They reveal the features of compressible convection even in the 
case of a moderate value of the stratification parameter. 
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APPENDIX. NOMENCLATURE 

density 
velocity component 
pressure 
temperature 
stress 
time 
space co-ordinates 
gravitation 
total energy 
internal energy 
Kronecker symbol 
viscosity 
gas constant 
thermal conductivity 
Stefan number 
stratification 
polytropic index 
temperature gradient 
aspect ratio 
Prandtl number 
ratio of specific heats 
Rayleigh number 
parameter of the semi-implicit scheme 
spectral approximation of the operator L 
perconditioning of the operator L 
parameters of the Chebyshev iterative method 
convective heat flux 
kinetic flux 
radiative flux 
viscous flux 
rate of work done by buoyancy 
rate of work done by pressure forces 
rate of work done by viscous forces 
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